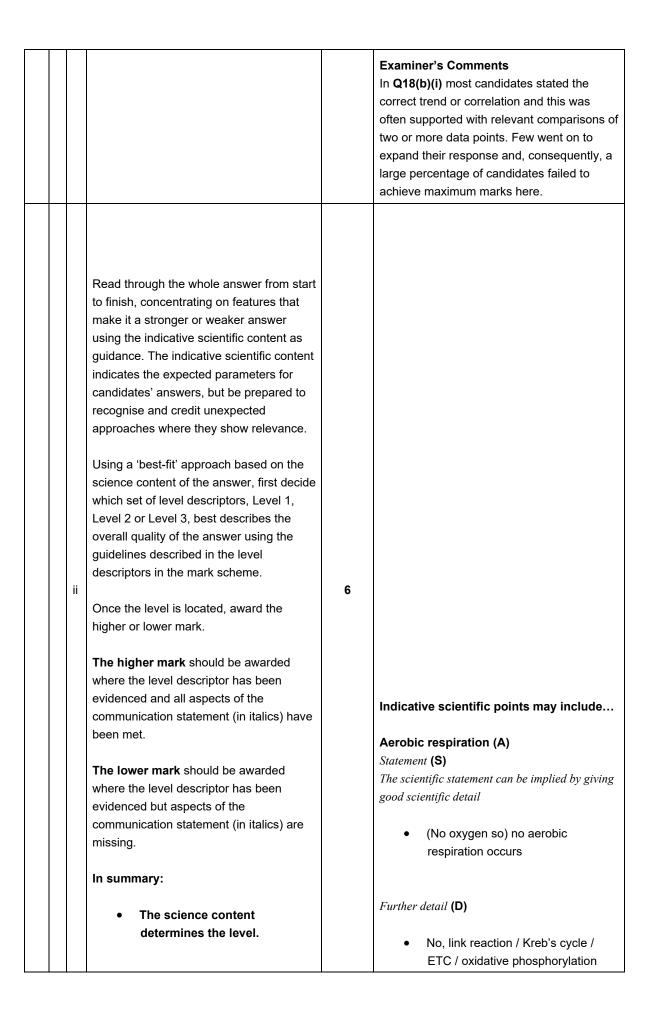
Mark scheme - Respiration


11		i	mitochondrion	1	ALLOW mitochondria.
		ii	<i>either</i> facilitated diffusion (1) conversion of ornithine into citrulline creates concentration gradients or (molecules are not lipid soluble so) require protein channels to cross membrane (1) or active transport (1) ornithine and citrulline need to be moved into and out of D more quickly than would be met by diffusion (1)	2	
		iii	deamination / removal of NH ₂ group from amino acid (1)	1	
		iv	ATP (1)	1	
			Total	5	
12	а		 <i>idea that</i> the oxygen will leak from the connectors so reduce the gas movement (1) or oxygen uptake may not be a good representation of respiration rate in germinating seedlings (1) or a small volume of gas is being measured in the capillary (1) or measurements only taken every 30 seconds (1) or 	1	 ALLOW seal not air tight so will not prevent gas escaping during the experiment or the idea that gas leakage is a problem and needs to be prevented. ALLOW the respiratory substrate stored in the seed will affect the oxygen needed or the idea that if photosynthesis has begun oxygen uptake will be disrupted. ALLOW need to record the maximum volume of gas taken up during the experiment. ALLOW alternative wording e.g. 'more frequent readings are needed'.

Respiration

	difficult to read the meniscus (may be subjective) (1)		
			The control method must be suitable, and be directly linked to the variable.
	<i>Variable</i> the mass of the seeds is not given (1) <i>Improvement</i> take the mass of the seedlings at the start (1)		ALLOW suggested mass values.
	<i>Variable</i> the volume / mass of soda lime is not specified (1) <i>Improvement</i> use a known mass of soda lime each time (1)		ALLOW suggested mass values.
	<i>Variable</i> the syringe is not given (1)		ALLOW alternative size if suitable for the activity.
b	Improvement use a 2 cm ³ syringe (1) Variable the capillary tube internal diameter is not given (1) Improvement use a capillary tube of length 20 cm and a 1 mm internal diameter (1)		ALLOW <i>idea that</i> only a linear measurement is obtained not a volume. ALLOW alternative size if suitable for the activity.
	<i>Variable</i> temperature not controlled (1)		ALLOW use of a water bath and thermometer to stabilise the temperature.
	<i>Improvement</i> allowing apparatus to, stabilise / equilibrate to temperature, before taking readings (1) <i>AVP</i> (1)		Must be explicit to provide valid data e.g. no scale on the capillary tube, no timing, no details of how to take the readings. Details must be workable and suitable to provide valid results e.g. scale on the capillary tube, use of timing devices, description of how to take readings from the scale etc.
с	dipped into a small beaker and allowed to run	1	ALLOW suitable details of how the red fluid is added.
d	<i>Explanation</i> it is more than 10% from the mean or it is different from the other data at 60 seconds	2	ALLOW 'it is out of line'

	or it does not follow trend for the times for replicate 3 (1) Action anomaly should be identified and excluded from processing or anomaly must be identified but could be included in calculations or repetition to obtain another reading (1)		ALLOW 'it is out of line'
е	0.36 mm s ⁻¹ (1)	1	Rate and units required for the mark.
fi	the internal diameter of the capillary tube (1)	1	
i	the mass of the bean seeds (1)	1	
g	 * Level 3 (5–6 marks) Describes a clear and detailed experiment that has been effectively adapted for use with chosen invertebrate to allow for the comparison of the rate of respiration with that of mung beans. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Describes an experiment to compare the rate of respiration of chosen invertebrate with mung beans but there is insufficient detail of the procedure to allow a valid comparison. There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1–2 marks) An attempt to describe an experiment to investigate the respiratory rate of an invertebrate but little comparison with mung beans. If results or conclusion suggested, likely to be muddled or inaccurate.	6	 Relevant points include: experiment mass of invertebrate and mass of beans the same safe and ethical use of invertebrates e.g. add screen so that animal(s) cannot touch the muslin bag bigger syringe needed (5–10 cm³) keep temperature constant / same for both assays keep light constant / same for both assays use same mass of soda lime in both assays measuring distance moved by coloured, red liquid at regular time intervals repeat experiments. results and conclusions invertebrates rate of respiration is expected to be higher than the rate of respiration of the beans <i>because</i> invertebrates are moving around metabolic processes require energy / generate heat.

			The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. 0 marks No response or no response worthy of credit.	15	
13	а	i	fossils in, known-age / Jurassic, strata / rocks	1	
		ii	DNA / cytochrome c	1	
	b	i	carbon dioxide diffuses down concentration gradient out of the respiring cell (1) carried through body from cell (to tracheoles) by blood passing out via tracheoles / trachea / spiracles (1) respiration generates heat (1) hot gases expand and are less dense so rise up by convection through the mound to vents at mound-top (1)	4	
		ii	<i>shape,</i> large or increased surface area to volume ratio (1) smallest area exposed to greatest heat (1)	2	Response must be linked to context of avoiding overheating / needing to get rid of heat.
			Total	8	
14		i	increased volume of water added (to seedlings), leads to lower survival (of seedlings) ✓ larger decrease in survival for added water, above / from, 30 (cm ³) ✓ volume of water has no effect on number (of seedlings) surviving up to the first 3 days / AW ✓ quote data points / calculation(s) used, to	3 max	ALLOW the more water the faster they die ALLOW ora e.g. less / little, decrease in survival for 30(cm ³) and below DO NOT ALLOW at 30cm ³ minimum one pair of readings quoted for two water volumes (no units needed)
			support any point ✓		water volumes (no units needed)

The communication statement determines the mark within a level.
Level 3 (5–6 marks) A detailed scientific statement about aerobic respiration AND a detailed scientific statement about anaerobic respiration AND more than one scientific consequence for the plant of overwatering
There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.
Level 2 (3–4 marks) A detailed scientific statement about either aerobic or anaerobic respiration AND a scientific consequence for the plant of overwatering
There is a line of reasoning presented with some structure. The information presented in the most part relevant and supported by some evidence.
Level 1 (1–2 marks) A statement about either aerobic or anaerobic respiration AND a scientific consequence for the plant of overwatering
There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant and correct.
0 marks No response or no response worthy of credit.

• No oxygen to act as the final, electron / hydrogen acceptor

Anaerobic respiration (An)

Statement (S)

The scientific statement can be implied by giving good scientific detail

• (Plant has to) switch to anaerobic respiration / only anaerobic respiration can occur

Further detail (D)

- Only glycolysis occurs
- Alcoholic fermentation occurs
- NAD regenerated (for glycolysis)
- Pyruvate to ethanal to ethanol
- Named enzyme e.g. pyruvate decarboxylase
- (Only) 2 ATP

Scientific consequences for the plant(C)

- ethanol is toxic
- (alcoholic fermentation) is irreversible
- Less ATP produced / only 2 ATP from glycolysis
- Less / no, active transport
- (root hair cells) cannot take up mineral ions (by active transport)
- so (plant) cannot make, proteins / amino acids / DNA / chlorophyll etc
- cannot generate water potential gradient (into roots) / water potential

(in root hair cells) is too high

- water cannot be absorbed (so cells cannot remain turgid)
- less / no, photosynthesis

 П			l
			Examiner's Comments
			Q18(b)(ii) Level of Response
			Examiners reported that there were some
			excellent responses to this question. In such
			responses, candidates demonstrated the
			ability to discuss the consequences of lack of
			oxygen on both aerobic and anaerobic
			respiration. Details included a relevant
			discussion of the different 8 stages of
			aerobic respiration i.e. link reaction, Krebs
			cycle or oxidative phosphorylation, with
			some candidates starting their explanation
			with the statement 'there would be no oxygen
			to act as the final electron acceptor'. Although
			stronger candidates also gave good detail
			about anaerobic respiration, generally this
			was not quite as well expressed. Candidates
			who referred to the lactate pathway were still
			able to gain the top level as some plants do
			use this mechanism. Candidates were often
			able to state that only glycolysis would be
			able to occur to produce small quantities of
			ATP and that NAD would be regenerated but
			detail about the pyruvate to ethanol pathway
			was seen less often. To obtain a Level 3
			answer, candidates needed to talk about two
			consequences of the lack of oxygen to the
			plant and this proved problematic for
			candidates, as it required them to bring
			together a variety of different ideas from the
			A Level course. Many did know that ethanol
			is toxic, and that less ATP would be
			produced overall. The best answers included
			references to a reduction in active transport
			and the consequences of this on mineral
			uptake. Candidates who achieved Level 2
			were often able to give a great deal of detail
			about aerobic respiration but were not able
			to provide the same level of detail about
			anaerobic respiration and were only able to
			give one consequence to the plant. Level 1
			candidates gave a simple statement such as,
			<i>with no oxygen the plant cannot carry out</i>
			aerobic respiration'. Candidates who did not
			also give a consequence did not pick up any
			marks. In general, candidates presented
			good lines of reasoning with structure, so
			many were able to achieve the higher mark
			within each level.
	Total	9	
		•	

15		i	length / size , similar to that of a bacterium ✓ contain (circular) DNA ✓ contain (70S / small / 20nm) ribosomes √ (may) have plasmids √ have double membrane √	max 2 (AO3.2) (AO2.1)	If more than two responses given: mark first response on each prompt line. If responses on first prompt line and nothing on second line then mark first two on first prompt line
		ï	 cells with mitochondria / early eukaryotes 1 would be able to respire aerobically √ 2 (this) produces more ATP √ 3 ATP needed for , active transport / cell division / protein synthesis / DNA replication √ 4 more ATP allows faster metabolic , processes / reactions √ 	3 (AO2.1)	Assume for cells with mitochondria Only need to mention ATP once ALLOW ORA for cells without mitochondria for MPs 1, 2, 4 ALLOW releases more energy DO NOT ALLOW 'produces' energy IGNORE growth ALLOW more ATP so can meet higher metabolic demand
			Total	5	
16		i	adenine √	1 (AO2.1)	DO NOT ALLOW adenosine IGNORE nitrogenous base / purine
		ii	hydrolysis √	1 (AO2.1)	IGNORE dephosphorylation
		iii	because ATP is , broken down / hydrolysed (to ADP) √ ATP is constantly recycled √	max 2	ALLOW ATP is unstable ALLOW constant interconversion of ATP and ADP (+Pi)
			ATP used to provide energy for , (named) metabolic reactions / processes √	(AO2.1)	ALLOW ATP produced is coupled to metabolic reactions IGNORE used for respiration unqualified
			ATP is , not stored long term / used immediately \checkmark		ALLOW ATP is used as fast as it is produced
			Total	4	
17	а		contain / location of , (named) electron carriers / ETC / ATP synth(et)ase / proton pumps √ (provide , site / location / surface) for , chemiosmosis / ATP synthesis / oxidative phosphorylation √ allow , formation / maintenance , of , H+ / proton / hydrogen ion , gradient √	max 2 (AO1.1)	Mark as continuous prose

			outer membrane is highly permeable to		
	b	i	allow movement of (named) molecules √ transmission electron (microscope) √	1 (AO2.1)	ALLOW TEM, 'microscopy' for 'microscope'
		ii	M = matrix √ N = crista(e) √	2 (AO1.1)	ALLOW inner membrane for N
			Total	5	
18			mitochondria / mitochondrion	1 (AO2.5)	
			Total	1	
19		i	U matrix ✓ W crista(e) / <u>inner</u> (mitochondrial) membrane ✓ Z <u>inter</u> -membrane space ✓	3	IGNORE ETC / ATP synthase / cytochromes ALLOW inter-membranal space Examiner's Comments Q19(c)(i) was generally well-answered although some candidates failed to interpret the diagram correctly and gave totally irrelevant structures as their answers. The most common mistake was failing to identify the inter-membrane space or referring to it as the inner-membrane space.
		ij	cyanide, prevents / AW, aerobic respiration AND fluoride, prevents / AW, anaerobic respiration (which also prevents aerobic respiration) √	1	 BOTH statements required for one mark IGNORE 'affects' throughout ALLOW link reaction / Krebs cycle / ETC / oxidative phosphorylation instead of aerobic respiration ALLOW cyanide allows, glycolysis / anaerobic respiration ALLOW prevents, all respiration / both stages of respiration IGNORE lactate fermentation Examiner's CommentsQ19(c)(ii) saw some strong responses with candidates using data to support their answer even though it was not required. Weaker candidates gave vague answers about how fluoride and cyanide 'affected' respiration or repeated the

			information in the table without attempting a conclusion.
	Total	4	
20	Total 2 (ATP molecules per glucose) from, glycolysis / (breakdown of) triose (bis)phosphate √ (when) triose (bis)phosphate / TP, converted / broken down, to pyruvate √ <i>ref to</i> net yield of 2 (ATP) / 4 (ATP) made but 2 used up (in glycolysis) √ 1 ATP (produced) per, (turn of the) Krebs cycle / acetyl (coA) √ when 5-carbon compound is converted to, 4-carbon compound / oxaloacetate √	4 4 max	ALLOW '4 ATP made from 2 TP's' 'net yield of 2 ATP's in glycolysis' = mp1 and 3 for 2 marks ALLOW 2ATP, per glucose in Krebs cycle / from every 2 acetyl (coA) ALLOW 'when citrate converted to oxaloacetate' ALLOW 'when succinyl CoA converted into succinate' ALLOW 'between (intermediate) 4C compounds' Examiner's Comments The production of ATP by substrate level phosphorylation was well understood by many. Candidates began their answer by stating that there would be a net production of 2ATP in glycolysis, or that 4 ATP would be produced but 2 were used up at the start. While many referred to triose phosphate being the source of phosphate, few then added that TP would be converted to pyruvate. Many candidates were unclear as to how many ATP would be generated in Krebs' cycle although higher ability ones commented that one ATP would be made per turn of the cycle, or two per molecule of glucose. Some correctly described where in the cycle ATP would be made while others thought it would be between citrate and the 5C compound, or at multiple points in the cycle.
			Some candidates believed that ATP would be produced in the link reaction and many

				went on to describe oxidative phosphorylation , which gained no credit.
		Total	4	
21	i	glycolysis / anaerobic respiration, can continue / AW√ because, conversion of glucose to TP is not needed / lactate inhibition is irrelevant / AW √ ATP is produced when TP is converted to pyruvate √	2 max (AO2.6)	IGNORE lactate pathway ALLOW description of glycolysis e.g. 'enzymes needed to convert fructose to triose phosphate are not inhibited by lactate' Examiner's Comments Candidates often referred to glycolysis being able to continue, though only a few explained that the alternative pathway would be inhibited by lactate, or that the conversion of TP to pyruvate would yield ATP.
	ïi	low body temperature / slow metabolic rate \checkmark less energy is spent on thermoregulation \checkmark	1 max (AO2.1)	ALLOW low metabolic rate / fewer metabolic reactions ALLOW other plausible physiological adaptations e.g. more creatine phosphate stores / more able to buffer H ⁺ ions / more myoglobin / Hb has higher affinity for oxygen / dissociation curve shifted to left / bradycardia / more erythrocytes Examiner's Comments This question was not well answered by the majority of candidates with many relating this to SA:V ratios or the idea of size. Most correct responses identified the slow metabolic rate of the mole rat, with few using the information gained at the start of the question to state that mole rats spend less energy on thermoregulation.
		Total	3	
22	i	Description of amino acid amino acidName of Justification acidImage: second secon	4 (AO3.1)	ALLOW (both have) 3C atoms DO NOT ALLOW 'same number of C and, H / O, atoms'

		fewest		atoms /		IGNORE 'both have 2 carboxyl groups'
		changes		Same number of		
				number of carbon		ALLOW (both have) 5C atoms
				atoms		DO NOT ALLOW 'same number of C and, H
				(Both		/ O, atoms'
		Converted to alpha-		have) 5 carbon		
		ketoglutarate	Glutamic	atoms /		
		with the	acid	Same		
		fewest		number of		
		changes		carbon		
				atoms		
				Highest		
				proportion		
				of oxygen		
		The amino		atoms (in its		
		acid with the	A	structure) /		
		highest respiratory	Aspartic acid	lowest		
		quotient		proportion		
		(RQ)		of C-H bonds		
				(relative to		
				other		
				bonds)		
		First row correct	ct √			
		Second row co				
		Aspartic acid √ Aspartic acid e		/		
		Aspartic aciu e				
		decarboxylation produced √ dehydrogenatio			2 max	
	ii	reduced NAD p			(AO1.2)	ALLOW mp's from correct equations
		produced√	/		(AO2.5)	
		ATP produced succinyl co-A /		fumarate /		
		malate / 4 C int				
		Total			6	
23		В			1 (AO1.1)	
		Total			1	

24		matrix of mitochondrion	1	ALLOW mitochondria
		Total	1	
				 16 carbon atoms in the fatty acid 2 carbon atoms in acetyl CoA (which enters the Krebs cycle) 2/16 x 100 = 12.5%
25	i	12.5 /13 (%) √	1	Examiner's Comments The percentage of carbon atoms of palmitoyl CoA entering the Krebs cycle was frequently incorrectly calculated, with many candidates failing to read the question and thus stating 100% for complete oxidation. Few appreciated that in Figure 2, only two of the 16 carbon atoms would enter the Krebs cycle, giving a percentage of 12.5. Many divided a seemly arbitrary number by 16.
	ii	67(%) AND (the link reaction is) more efficient./ Examiner's Comments The calculation of the efficiency of the link reaction was also often incorrect, with candidates giving an array of different answers. Higher ability candidates provided the correct answer of 67% and then stated that the link reaction would be more efficient than beta oxidation.	1	 ALLOW 66.6[.] / 66.67 / 66.7 / 66.7 (%) DO NOT ALLOW 66.6 (incorrect rounding) acetyl CoA (2 carbon atoms) is produced from pyruvate (3 carbon atoms) in the link reaction 2/3 x 100 = 67 % ALLOW ECF if the answer to (i) is greater than 66.7% and 'less efficient' has been written <i>OR</i> if the answer to (i) is 66.7% and 'equally efficient' has been written if NR or no answer given in (i) then 1 mark for correct efficiency calculation and IGNORE efficiency statement Examiner's Comments The role of co-enzymes in beta oxidation was well understood by many candidates, with comments such as NAD/FAD would act as hydrogen acceptors or transfer hydrogen atoms. Some also stated that the carriers

	iii	(FAD/NAD) accepts / is reduced by/ transfers / AW, hydrogen (atoms) √	1	would become reduced. Common errors included the co-enzymes simply removing hydrogen atoms, rather than accepting or transporting them, or an incorrect reference to hydrogen ions or molecules. DO NOT ALLOW hydrogen, ions / molecules ALLOW 'carries / transports / picks up, hydrogens' IGNORE 'removes, hydrogens'
		Total	3	
26	i	K acetyl group (of CoA) (1) L citrate (1) M carbon dioxide / CO ₂ (1) N oxaloacetate (1)	4	ALLOW acetate
	ii	Q substrate level phosphorylation (1)	1	
		Total	5	
27		 * Read through the whole answer from start to finish, concentrating on features that make it a stronger or weaker answer using the indicative scientific content as guidance. The indicative scientific content indicates the expected parameters for candidates' answers, but be prepared to recognise and credit unexpected approaches where they show relevance. Using a 'best-fit' approach based on the science content of the answer, first decide which set of level descriptors, Level 1, Level 2 or Level 3, best describes the overall quality of the answer using the guidelines described in the level descriptors in the mark scheme. Once the level is located, award the higher or lower mark. The higher mark should be awarded where the level descriptor has been evidenced and all aspects of the communication statement (in italics) have been met. 	6	Indicative scientific points may include

The lower mark should be awarded • NAD: where the level descriptor has been oxidation of / removal of H 0 / removal of electrons evidenced but aspects of the communication statement (in italics) are from, triose (bis)phosphate missing. in glycolysis oxidation of / removal of H 0 In summary: / removal of electrons from, pyruvate in link The science content reaction • determines the level. oxidation of / removal of H \circ The communication statement / removal of electrons determines the mark within a from, intermediates in Krebs cycle level. reduction of / addition of 0 electrons to, electron transport chain / cytochrome in oxidative Level 3 (5-6 marks) A full and detailed summary of the role of phosphorylation reduction of / addition of the different coenzymes in respiration, 0 electrons to, pyruvate in including their importance in processes lactate fermentation that link together the component stages. reduction of / addition of 0 There is a well-developed line of electrons to, ethanal in alcoholic fermentation reasoning which is clear and logically structured. The processes are detailed FAD: oxidation of / removal of H 0 and clearly explained. / removal of electrons Level 2 (3-4 marks) from, intermediates in Krebs cycle A clear summary of the role of coenzymes in respiration is present, including some discussion of their involvement with various processes in the component stages. There is a line of reasoning presented with some structure. The processes have some detail and are explained generally well. Level 1 (1–2 marks) A limited summary of the role of some of the coenzymes in respiration is present, including some discussion of their involvement with process(es) in the component stages. There is a logical structure to the answer. The explanation, though basic, is clear. 0 marks

		No response or no response worthy of credit.		
		Total	6	
28	а	 *Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Read through the whole answer. (Be prepared to recognise and credit unexpected approaches where they show relevance.) Using a 'best-fit ' approach based on the science content of the answer, first decide which of the level descriptors, Level 1, Level 2 or Level 3, best describes the overall quality of the answer. Then, award the higher or lower mark within the level, according to the Communication Statement (shown in italics): award the higher mark where the Communication Statement has been met. award the lower mark where aspects of the Communication Statement have been missed. 	·	
		 In summary: The science content determines the level. The Communication Statement determines the mark within a level. 		
		Level 3 (5–6 marks) Full and detailed explanation of how increased proton channels in inner mitochondrial membranes results in less likelihood of fat deposition in the body. Learner demonstrates a detailed understanding of the different processes involved and explains their implications. There is a well-developed line of	6	 Indicative scientific points may include larger number of protons pores results in protons leaking back into matrix reduces yield of ATP from chemiosmotic gradients less ATP is made from oxidative phosphorylation more energy wasted as heat

		 reasoning supported by clear scientific detail. The information presented is relevant and clearly explained. Level 2 (3–4 marks) Generally clear explanation of how increased proton channels in inner mitochondrial membranes results in less likelihood of fat deposition in the body. Learner demonstrates a reasonable understanding of the different processes involved and explains their implications. There is an attempt at a line of reasoning supported by some scientific detail. The information presented is largely relevant and clearly explained. Level 1 (1–2 marks) Limited explanation of how increased proton channels in inner mitochondrial membranes results in less likelihood of fat deposition in the body. Learner demonstrates a limited understanding of the different processes involved and explains their implications. There is little attempt at a line of reasoning supported by basic scientific detail. The information presented may be unclear and lack organisation. 0 marks 		 energy from chemiosmosis decoupled from ATP synthesis energy yield from aerobic respiration reduced per molecule of glucose food not converted to ATP as efficiently less excess energy intake in diet less deposition of fat fat stores may be respired for energy
b	i	U ATP synthase √ Q electron carrier √	2	ALLOW ATP synthetase / F1 complex ALLOW cytochrome / proton pump
	ii	 P inter-membrane space √ S matrix √ 	2	
	iii	R Krebs cycle √ T ATP synthesis √	2	ALLOW citric acid / tricarboxylic acid / TCA
с	i	(mostly) impermeable to H ⁺ ions / protons √ large surface area √	2 max	DO NOT ALLOW H / hydrogen

Respiration

	Т			
		presence of, ATP synthase / stalked particles √		IGNORE ETC / cytochromes
		pH decreases		
	ii	AND	1	
		becomes more positive(ly charged) \checkmark		
		Total	15	
29		In summary: Read through the whole answer. (Be prepared to recognise and credit unexpected approaches where they show relevance.) Using a 'best-fit' approach based on the science content of the answer, first decide which of the level descriptors, Level 1, Level 2 or Level 3, best describes the overall quality of the answer. Then, award the higher or lower mark within the level, according to the Communication Statement (shown in italics): award the higher mark where the • Communication Statement has been met. award the lower mark where aspects of • the Communication Statement have been missed. • The science content determines the level. • The Communication Statement determines the mark within a level. Level 3 (5–6 marks) Full and detailed description of the	6	 Indicative scientific points may include These are not mark points See appendix occurs in mitochondria / on membrane involves inner membrane and matrix involves movement of hydrogen across membrane use of enzyme / channel protein / ATP synthase Hydrogen ions / H⁺ ions pumped out of matrix across membrane into intermembrane space Proton / H⁺ gradient created proton-motive force H⁺ ions pass through hydrophilic transmembrane protein cristae / stalked particles involved ATP synthase produces ATP from ADP + Pi H⁺ ions leak back into matrix / process is not completely efficient
		Full and detailed description of the processes involved in chemiosmosis. Learner demonstrates a detailed understanding of where it occurs, the stages, reactants and products, describing a range of the processes involved.		Examiner's Comments This Level of Response question assessed AO1 in the context of chemiosmosis. There were some excellent responses with candidates across the ability range
		There is a well-developed line of reasoning with accurate descriptions of the processes. The information presented is relevant and clearly outlined.		demonstrating their ability to recall the process of chemiosmosis, the molecules involved and where in the cell it takes place. Many candidates followed the prompt in the question stem and referred only to

	Level 2 (3–4 marks) Detailed description of the processes		extended responses including all stages of aerobic respiration which was not required
	involved in chemiosmosis. Learner		and so were credited the lower mark within
	demonstrates understanding of the where		the level for their communication statement.
	it occurs, stages, reactants and products,		There were some common errors seen in
	describing some of the processes		lower attaining responses which included
	involved.		mixing up the structures of mitochondria and
			chloroplasts and confusion about whether it
	There is a line of reasoning with accurate		was electrons or protons moving through the
	descriptions of the processes. The information		electron transport chain or ATP synthase.
	presented is in the most-part relevant and		
	supported by some detail.		Exemplar 4
	Level 1 (1–2 marks)		Guesse wit free broken day wars bus private moreuse
	A description of the processes involved in		in the cytopharmos the sell during a process called glycallis.
	chemiosmosis is attempted, with some		activities to management into whether more and the second second the second
	understanding of the different stages,		Mun reaction (alle known an oridatin decanoomitation). The
	reactants and products.		an accept grave units the man to the krow accept
			Mia sweety a consume called Cornerme A. During the detuction
	The information is basic and communicated in		2) Matemarchistre and pyrate in the guy chuli and the loop
	an unstructured way. The information is		Burnier decarbonistion and delugdurgenation of litrate (formed
	supported by limited detail which may be		by wordloocentre and accept grave produces yet more MAST.
	unclear.		tion mounts mi corrise on michable phopheneration unere there
			electrons mar two up the electron camer of the electrons.
	0 marks		Wanyour during where here release energy each time ther Poss minutign win electron convier "This' energy Museuto
	No response or no response worthy of		pump H+ across the membrane of the Costac and into me
	credit.		intermembrane space this leads to a provin gradient Javidins the addition of the second the second the second the
	NB		Membrand membrane dans the transmission gradient. But due to the Miparmeability of the membrane to Ht low they
	No response		Any twengh & ATP Synthesic which Catalysis the Remotion or A TP from ADP and P i. This is the process or producing ATP
			from chearidmosis.
			This exemplar shows an excellent Level 3
			response for science content. The candidate
			has been credited with the lower mark within
			the level as over half of the response
			contains irrelevant detail about other stages
			in aerobic respiration which was not required.
	Total	6	
		,	
	<i>idea of</i> establishment of H+ ion gradient \checkmark		e.g. ' pumping protons into intermembranal
			space'
	H ⁺ ions, flow down a concentration		DO NOT ALLOW 'H ⁺ ions pumped (from
	gradient / AW √	3 max	intermembrane space / through ATP
30		(AO1.1)	synthase)
		、 - ··)	
	from intermembrane space to matrix \checkmark		DO NOT ALLOW 'energy produced to join
	through ATP synthase √		ADP and Pi'

chemiosmosis. Some candidates wrote

		energy, provided / AW, to join ADP and Pi (to form ATP) √		
		Total	3	
				If no definitive answer given in Table 20, look in space above for working and / or answer.
				ALLOW 3, 4, 5 OR 6 to correct SF for 3 marks ALLOW 3, 4, 5 OR 6 to incorrect SF for 2 marks
				ALLOW 2 OR 7 to correct SF for 2 marks ALLOW 2 OR 7 to incorrect SF for 1 mark
				ALLOW any other figure to correct SF for 1 mark any other figure to incorrect SF = 0 marks
				If no marks awarded from above, look for the following evidence of working for 1 mark
				mean / [†] = 30 OR Σ = 228
31	a	5 √√√	3	OR $s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}} \qquad \qquad \sqrt{\frac{\sum (X - \overline{X})^2}{N}}$ OR
				Examiner's Comments In Q20(a) it was pleasing to see some candidates remembering the formula for standard deviation (SD), despite this not being a requirement of the specification, and completing the calculation correctly. A few candidates appear to have estimated the SD by looking at the SD calculated for the other sets of data, or using the SD function on their calculators to elicit an answer. Overall many candidates were awarded maximum marks by either calculating the correct answer 5 , or estimating it would be somewhere between 3 and 6 . Bearing in mind that candidates were told to give their response to one significant figure, Examiners noted that some candidates gave responses

			to two or more significant figures. A proportion of candidates who had not given a final answer were credited with one mark for calculating the mean. However, there were quite a few candidates who understandably did not attempt the question in the absence of the formula, which should have been included.
b	SD bars plotted correctly for the first four yeast species above and below the mean. √√	2	A correctly plotted SD bar is an accurately drawn vertical line. If the top and bottom of the line are capped, accept only the following symbols $-$, X, \bigcirc IGNORE <i>A. pullulans</i> (both columns) ALLOW one complete SD bar incorrect For one mark Four, five or six complete correct SD bars Examiner's Comments Candidates did not require an answer to Q20(a) in order to achieve full marks for Q20(b), however those that did were in the minority. When the bars were plotted they were usually correct, though some candidates plotted the bars thinking the standard deviation was the total length of the bar rather than the length each side of the mean, resulting in the bars being half the required length. Some candidates appeared to have little knowledge of what an error bar should look like and plotted the SD as a number and even sometimes drew a line between points at the base of the graph or drew them as an extra bar. It is worth noting that a number of candidates who drew more conventional error bars would have lost marks had there been a requirement to use a ruler as there were some very poor freehand lines. Some candidates were unsure how to cap the line but the crosses and circles added rarely interfered with the accuracy of the plot.
с	61.54 (%)	3	IGNORE + or - signs ALLOW for two marks correctly calculated answer not to 4 SF e.g. 61.538 / 61.5

		OR		e.g. 70.198 / 70.2
		70.20 (%) (calculated from Table 20) √√√		ALLOW for one mark evidence of a correct calculation e.g. $\frac{21-13}{13} \times 100 \text{OR} \frac{21.417-12.583}{12.583} \times 100$
				Examiner's Comments As the question stem for Q20(c) did not guide candidates to use Fig. 20 to access the means some picked a different route and used the figures from Table 20 in their calculations. Both routes could access three marks with 61.54% the most commonly seen correct response. Some candidates lost marks for errors of arithmetic or rounding whilst others that gave the correct number of significant figures in other questions occasionally failed to do so here. Percentage change for the wrong yeast species was seen and, unfortunately, many candidates incorrectly calculated from aerobic to anaerobic giving the incorrect response of 38.10%. A number of candidates also made the mistake of dividing the actual value of the anaerobic CO_2 production rather than the difference between the two values.
d	i	 1 incorrect because A. pullulans / one yeast (species), produced more CO₂ in anaerobic conditions ✓ 2 incorrect because error bars / standard deviations, overlap ✓ 	2	ALLOW no <i>t</i> -test carried out DO NOT ALLOW range bars Examiner's Comments In 20(d)(i) the majority of candidates identified the first statement as incorrect and went on to give the correct reason that <i>A.</i> <i>pullulans</i> produced more CO ₂ in anaerobic conditions. Most candidates did identify the second statement as incorrect but only stronger candidates stated that it was incorrect because of the standard deviation overlap or that a statistical test was not carried out. Only stronger candidates grasped the fact that for error to be random the SDs must be wide-ranging thereby gaining credit in

					Q20(d)(ii) . Most candidates cited some aspect of the methodology as being inaccurate as evidence for their answer or limitations of equipment rather than reflecting on the results.
		ï	random error (because) some (experiments / yeast species / columns on chart with) large SDs / error bars ✓	1	DO NOT ALLOW standard error DO NOT ALLOW range bars Examiner's Comments In 20(d)(i) the majority of candidates identified the first statement as incorrect and went on to give the correct reason that <i>A.</i> <i>pullulans</i> produced more CO ₂ in anaerobic conditions. Most candidates did identify the second statement as incorrect but only stronger candidates stated that it was incorrect because of the standard deviation overlap or that a statistical test was not carried out. Only stronger candidates grasped the fact that for error to be random the SDs must be wide-ranging thereby gaining credit in Q20(d)(ii). Most candidates cited some aspect of the methodology as being inaccurate as evidence for their answer or limitations of equipment rather than reflecting on the results.
	e		ribosome(s) ✓	1	ALLOW <u>rough</u> endoplasmic reticulum / RER Examiner's Comments Q20(e) was generally well-answered with only a few incorrect responses seen, the most common being Golgi apparatus or nucleus.
			Total	12	
32		i	 (at start) respiration is <u>anaerobic</u> / glucose converted into ethanol√ respiration, decreases rapidly / stops , once glucose used up √ ethanol used (as a carbon source) once glucose has been consumed √ aerobic respiration (of ethanol) √ 	3 max	ACCEPT oxygen is needed for the

	5. (because) acetyl Co A used in Krebs cycle √		metabolism of ethanol
	6. respiration stops when, ethanol / respiratory substrate, has been used up ✓		Examiner's Comments This question proved to be a good discriminator. This was a difficult graph to interpret and some candidates were confused in their answers. There were numerous responses based entirely on recall of aerobic respiration followed by anaerobic respiration when yeast is used to produce ethanol. Candidates seemed quite happy to ignore or misrepresent the evidence of the graph to fit with their preconceptions. Good candidates just looked at the evidence and drew the correct if unfamiliar conclusion, which was that anaerobic respiration was followed by aerobic respiration. Weaker candidates did not get to grips with the idea that glucose was used as a respiratory substrate at first, and then ethanol. Neither did they link that with the type of respiration. Weaker candidates often gave a detailed description of the graph, quoting data in great detail, but did not mention the type of respiration occurring rather taking the approach of manipulating
			data, which gained no credit. Mark first two suggestions given
	(use) aseptic techniques / avoid contamination √ provide (sources of) nutrients / respiratory		ACCEPT a description of an aseptic technique ACCEPT sterile techniques ACCEPT a specific example of a nutrient
11	substrates √ (incubate at) suitable temperature √	2 max	ACCEPT optimum temperature / right temperature /a specific, appropriate temperature (15 – 35°C) IGNORE keep temperature constant / low temperature/ monitor temperature / control temperature
	use (pH) buffer √		ACCEPT maintain optimum pH / right pH /a specific, appropriate pH (4–7) IGNORE keep pH constant / monitor pH / control pH
	agitation / stirring / shaking \checkmark		ACCEPT mixing

				IGNORE ref to aeration / oxygen supply / sparging Examiner's Comments This was well answered on the whole, and many candidates scored two marks. The majority of candidates got two marks for mentioning the use of aseptic techniques and mark point 3 or 4 for the use of optimum temperature or optimum pH. Some candidates stated control temperature and pH rather than the idea that these factors needed to be suitable for the yeast, and it was disappointing to see that some candidates suggested that the
		3.75 √ x 10 ⁵ √	2	'culture' should be sterilised, which gained no credit. One mark awarded for a correct calculation with the wrong number of significant figures or not in standard form (e.g. 375000 , 375×10^3 , 3.8×10^5) Examiner's Comments Many candidates had trouble with this calculation. It was clear which candidates had been taught how to calculate population numbers in relation to dilutions. However, a large proportion of the candidates then failed to give their answer in standard form or to three significant figures, and so only gained one mark. It is important that centres make sure that candidates know how to calculate serial dilutions and are able to put their answer into standard form and the correct number of significant figures. Some candidates were able to work out that there were 150 bacteria in 1 ml of 10^{-2} dilution, but then got confused and were unable to convert this to 15000 in 1 ml of original culture and hence then calculate $15000 \times 25 = 375000 (3.75 \times 10^5)$ in 25 cm^3 of the original culture.
	iv	<i>Yes because</i> a suitable, range / intervals, of temperatures have been chosen √	3 max	Max 2 for statements supporting only one view IGNORE large / wide, range of temperatures

volume controlled √ temperature , controlled / maintained √ repeats, to identify anomalies / outliers √ same yeast suspension used √	IGNORE repeats exclude anomalie	25
No because availability of, oxygen/ nutrients / yeast concentration, not controlled √		
pH is not be controlled at start of experiment √ <i>idea of</i> pH change would not be an accurate measure of respiration rate √	ACCEPT 'better to collect (volume carbon dioxide produced' / 'It is bet a respirometer' (implies pH change accurate) 'because some CO ₂ wou into the air'	ter to use not
no time reference (to calculate rate) √ no control (sample) √	Examiner's Comments Many candidates scored well on the question and it was good to see how realised that using a pH probe is not accurate way to measure respiration However, some candidates used vol- language, such as 'a range of temp without qualification, and a sizeable proportion gave only 'yes, because because' answers, obviously not understanding the significance of te 'evaluate'. Candidates need to be t when asked to evaluate they need arguments for and against. Weaker candidates suggested that pH need controlling which showed a lack of understanding of the question. A nu also did not get mp 4 under the Yes because they did not mention that here repeats one can help to identify the Instead they went one step further mentioning removing the anomaly of	w many ot an on rate. ery vague beratures' e ' or 'no, erm aught that to put ded umber s section by doing a anomaly. and were or
difference (between the means), is not v significant / can be explained by chance (at $p = 0.05$) \checkmark	discarding it in order to calculate th ACCEPT null hypothesis / H₀, can accepted DO NOT ACCEPT null hypothesis be rejected 1 ACCEPT the results are not signified different (p = 0.05) Examiner's Comments This was well answered, showing to	be / H₀ can cantly

					candidates seem to understand how to interpret statistical calculated values. It was clear that many candidates had been taught this basic statistical test and what it showed. However a significant number of students still gave confusing answers and failed to understand that if the <i>t</i> value is less than the critical value at $p = 0.05$, the null hypothesis should be accepted and there is no significant difference. They often confused results not being significantly different with the null hypothesis being rejected so they ended up getting no marks. Very weak candidates just stated that the results were not different. The words significant or different were missing from the responses.
			Total	11	
33		i	it (only) respires in the absence of oxygen	1	Must imply that the absence of oxygen is the preferred / essential condition. e.g. 'can respire in the absence of oxygen' does not really imply this, as this statement also applies to aerobic organisms.
		ii	it hydrolyses a peptide bond between two amino acids (residues) which are joined by a disulfide bond	1	
			Total	2	
34	а		<i>two from</i> cells are able to tolerate, high levels of lactate / acidity / low pH (1) have high phosphocreatine stores (1) use of stored ATP (1)	2	
	b	i	D pyruvate (1)E lactate (1)	2	
		ii	is a hydrogen acceptor / removed hydrogen from reduced NAD	1	
		111	<i>two from</i> for glycolysis to take place, NAD / G , is needed (1) there is a limited amount of NAD in the cell (1) formation of, NAD / G , allows, glycolysis to continue / some ATP to be formed (1)	2	
		iv	liver and in the blood	1	Both required for 1 mark.

			Total	8	
35	а		pyruvate \checkmark Krebs \checkmark liver \checkmark	5	ALLOW citric acid / tricarboxylic acid / TCA
			ATP √		
	b	i	1122.06 √√	2	1 mark max if answer is not to 6 s.f. 1 mark max for rounding error If incorrect, ALLOW 1 mark for evidence of: $\frac{831-68}{68} \times 100$ ALLOW 1 mark for 91.8171
		11	1.38 × 10 ²⁵ √√√	3	2 marks max if answer is not to 3 s.f. If incorrect, ALLOW 1 mark for evidence of any of the following, up to a maximum of 2: \circ conversion of 100g to 35g, e.g. $478 \times \frac{35}{100} = 167.3$ kCal \circ conversion of kcal to kJ, e.g. $167.3 \times 4.18 = 699.31$ kJ • conversion of moles to molecules × 6.02×10^{23}
		iii	(cheese is high in) fat which has, the highest / 831, kcal per 100g √ fatty acids have many H atoms √	2 max	

Respiration

		can be oxidised many times in Krebs cycle √ (so) reduce many NAD / produce many NADH (in Krebs cycle) √		ALLOW many turns of Krebs cycle
		Total	12	
36	а	cookie <u>2</u> is protein cookie √ RQ of cookie 2 is 0.94 AND RQ of cookie 1 is 0.98 √ lower RQ means (cookie 2) must have more protein √ RQ closer to 1.0 means more carbohydrate √	3 max	ALLOW ORA
	b	maggots will not produce CO₂, during lactate fermentation √ yeast will produce CO₂, during alcoholic fermentation √ measuring RQ requires CO₂ production / RQ value (for maggots) will be lower than normal √ OR 2 minutes not long enough for, yeast / maggots, to, break down / respire, cookie √ CO₂ produced (by yeast) is not from respiration of cookie √ RQ (comparison) will be invalid √	3	IGNORE "maggots will die" because experiment is only for 2 minutes
		Total	6	
37		GenusDietJustificationCamponotusmainly carbohydrate(RQ is) 1.0Melophorusprotein OR lipid and carbohydrate(RQ is) 0.9	3	DO NOT ALLOW all three substrates for <i>Melophorus</i> ALLOW amino acids for protein for <i>Melophorus</i> ALLOW fat / oil / triglyceride / fatty acid for lipid for <i>Cataglyphis</i>

	[
Cataglyphis lipid	(RQ is) 0.7	ALLOW THREE marks for correctly
		completed table
		ALLOW RQs to greater number of sig.figs.
		e.g. 1.01 / 0.89 / 0.687
		If Rf or RV is stated instead of RQ allow max
		1 for justification column
		· · · · , · · · · · · · · · · · · · · · · · · ·
		ALLOW TWO marks for all correctly
		calculated RQ values in justification column
		/ on Fig.19.1
		OR
		ALLOW TWO marks for:
		correct two responses in diet <u>column</u> AND
		for correct three justifications written in
		words i.e.
		$Camponotus - CO_2$ produced is , similar /
		equal to O ₂ consumed
		<i>Melophorus</i> - CO_2 produced is 0.07 less than
		O_2 consumed <i>Cataglyphis</i> - CO_2 produced is
		0.46 less than O ₂ consumed
		If RQ values have not been calculated or
		are incorrect
		are incorrect
		ALLOW ONE mark for correct diet column
		OR
		correct justification column written in words
		OR
		two correct RQ values
		Examiner's Comments
		There were some excellent responses from
		candidates who were able to correctly
		calculate RQ values and then suggest the
		correct diet, although some candidates
		confused protein and lipids. Some
		candidates described the justifications in
		words but did not include numerical data or
		calculations and whilst not credited for this,
		they could still be credited for a correct diet
		column.
		Evennler 2
		Exemplar 3

,					
					Genus CO2 produced (mm ³ c ⁻¹) O2 consumed (mm ³ c ⁻¹) R Q
					Camponotus 0.89 0.88 16)
					Melophorus 0.59 0.66 0.893 Catagivahis 1.01 1.47 0.68
					Table 19.1 (a) Use the data in: Table 19.1 to suggest the likely dist of each genue of honeypot ant.
					Justify your answer. Genus Diet Justification
					Componetus mainiy carbohydrate RQ_iS_ABRHM_07.8-
					Mokephorus mainty lipid RQ is 0.89 Chigh
					Categophia Marky policin BQ is 0.69 (LUNKE
					(3)
					This exemplar shows correct justification
					with clear calculations of the RQ values.
					Although they have confused the two
					respiratory substrates in the diet column.
			Total	3	
			0 watts: (mainly) carbohydrates respired / AW \checkmark		
			50 watts: (more) fats / lipids / amino acids /		ALLOW (mainly) glucose respired
38			proteins, respired / AW \checkmark	3	DO NOT ALLOW 'only, fats / amino acids /
				(AO3.1)	proteins, respired'
					proteins, respired
			250 watts: (more) anaerobic respiration / AW \checkmark		
			Total	3	
					e.g. take 1 cm ³ of culture and make up to 10
					cm ³
			1 correct description of 1:10 dilution (ALLOW diagram showing serial dilution
			1 correct description of 1:10 dilution \checkmark		steps
			2 need to make , a total of four 1:10		
			dilutions / hree further 1:10 dilutions \checkmark	3 max (AO2.4)	DO NOT ALLOW 1cm ³ + 10cm ³
					DO NOT ALLOW add 0.1 cm ³ into 9.9cm ³
39		i	3 correct values of dilutions given		for
			-	(AO3.3)	MP1 (due to measuring cylinders provided) but then ECF for MPs 2 and 3
			between stages e.g.1:10 to 1:100 \checkmark		
			4 (ensure) mixing of yeast (suspension) at		
			each stage \checkmark		ALLOW values in standard form e.g. 1: 102
					ALCON Values in standard form 6.9. 1. 102
					ALLOW e.g. stir thoroughly and repeat
					ALLOW C.Y. Sur morouging and repeat
			eyepiece graticule \checkmark	2	
		ii	stage micrometer √	(AO2.3)	IGNORE haemocytometer
				,	
					FIRST CHECK ON THE ANSWER LINE if
		iii	1.25 × 10 ⁸ √√	2	answer = 1.25 × 10 ⁸ , award 2 marks If
1				(AO2.4)	answer incorrect:
1				Ì Í	
					ALLOW 1 mark for

		iv	straight line \checkmark starting at 0,7 \checkmark ending at 15,10 \checkmark	3 (AO2.4)	answer not in standard form OR incorrect standard form e.g. 125 x 10 ⁶ OR use of equation with correct figures number of cells $= \frac{2.5 \times 10^{-3}}{2.0 \times 10^{-11}}$
					6 5 6 3 6 9 12 15
			Total	10	
40			А	1 (AO2.7)	
			Total	1	
41	а	i	 rate of respiration is proportional to rate of gas production √ use a tangent (on non linear part of curve) √ measure / calculate , slope / gradient (of each line) √ volume of gas (collected) divided by time √ compare the same , time / period (between sugars) √ 	max 3 (AO2.3) (AO3.3)	ALLOW MPs 2, 3 and 5 from annotation of graph ALLOW seen as units e.g. cm ³ min ⁻¹ ALLOW within prose / calculations
		ïi	Summary of instructions to markers: See instruction 10 on page 5 of this mark scheme. Level 3 (5–6 marks) An evaluation of both conclusions to include for and against statements There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated	6 (AO3.2)	 Indicative scientific points may include: Conclusion that rate of respiration of glucose, maltose and sucrose is similar Supporting statements (correct because) the slope of each curve is similar values for overall / mean rates are similar calculated values e.g. sucrose ~1.9cm³ min⁻¹, glucose ~2.1cm³min⁻¹ naltose ~2.4cm³min⁻¹
			Level 2 (3–4 marks) An evaluation of one conclusion to		Against statements (incorrect because)

		 include for and against statements. OR for or against statements for both conclusions. There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence Level 1 (1–2 marks) Incomplete evaluation e.g. for or against statements for one conclusion. The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. O marks No response or no response worthy of credit. 		 glucose respiration begins sooner than maltose / sucrose glucose has more rapid increase at beginning lag before respiration of maltose / sucrose begins sucrose / maltose rate continues to increase as glucose is slowing down maltose / sucrose may need to be hydrolysed before used in respiration <i>Conclusion that yeast could not hydrolyse</i> <i>disaccharides</i> <i>Supporting statements (correct because)</i> little / no lactose respiration lactose was not hydrolysed yeast do not have the enzyme to hydrolyse lactose <i>Against statements (incorrect because)</i> maltose / sucrose are disaccharides maltose / sucrose are respired maltose / sucrose are respired may be that lactose could be hydrolysed but cannot be absorbed <i>Either conclusion (against)</i> need statistical analysis to determine significance e.g. t-test / standard deviation measuring volume of gas over time only estimate of rate of respiration
		rinse / change , flask / equipment \checkmark stir yeast , (stock) solution / suspension \checkmark	max 2	ALLOW e.g. use different stirrer each time
b	ì	(yeast stock solution made from) same type of yeast √ ensure connection to gas syringe is tight √	(AO3.3)	ALLOW ensure no leaks in gas syringe

		check temperature of , water bath / yeast (stock) solution , is 35 °C \checkmark		
	ii	boiled (and cooled) yeast / use buffer instead of yeast \checkmark	1 (AO3.3)	
		Total	12	